

Large-scale Modeling of Bioenergy Mandates under Volatile Crop Yields

Sabine Fuss, Petr Havlik, Jana Szolgayová, Michael Obersteiner, Erwin Schmid (BOKU)

International Institute for Applied Systems Analysis
Ecosystems Services & Management Program

International Energy Workshop Stanford, July 2011

Background

- ➤ Volatility of crop yields
 - Bioenergy Mandates
 - Food security concerns
 - Impact on prices, environment
- > Analysis so far largely deterministic
 - Uncertainty taken into account through scenario analysis
 - Scenarios appropriate to explore ranges of outcomes
 - Decisions taken under uncertainty different from those formed on the basis of complete information

Relative Difference in Variances (2050/2100) in Wheat Yields

[Data: Tyndall, Afi Scenario]
IEW2011 July 7

Research Questions

- Promotion of biofuels
 - Climate change mitigation (e.g. in the European Union)
 - Consolidation of energy security (e.g. in the US)
- BUT: additional pressure on land
 - Competition with efforts to store more carbon by decreasing deforestation rates
 - Diversion of food crops into the production of bio-fuels as a reason for increased food price volatility
 - Wright (2010): US/EU bio-fuel mandates contributing to food price spikes
- Two channels to dampen this:
 - Storage
 - "Option agreements with domestic biofuel producers" to ensure diversion of grain to human consumption during food shortages

Overview

- ➤ Brief overview of the Global Biosphere Management Model (GLOBIOM), www.globiom.org
- > Stochastic version of GLOBIOM
- Scenarios
- > Results

Global Biosphere Management Model

Coverage: the Earth

Basic resolution: 28 regions

Three Land-based Sectors

Forestry: traditional forests for sawnwood, and pulp and paper production

Agriculture: major agricultural crops and livestock products **Bioenergy**: conventional crops and dedicated forest plantations

Supply Chains

Cropland - EPIC

Processes

- Weather
- Hydrology
- Erosion
- Carbon sequestration
- Crop growth
- Crop rotations
- Fertilization
- Tillage
- Irrigation
- Drainage
- Pesticide
- Grazing
- Manure

Major outputs:

- ✓ Crop yields, environmental effects (e.g. soil carbon)
- √ 20 crops (>75% of harvested area)
- ✓ 4 management systems: High input, Low input, Irrigated, Subsistence IEW2011 July 7

Optimization Model (FASOM structure)

- Recursive dynamic spatial partial equilibrium model
- Partial equilibrium model: endogenous prices
- ➤ Maximization of the social welfare (PS + CS)

Drivers and Output

Main exogenous drivers:

Population (IIASA projections)

Diets (FAO, 2006)

Bio-energy demand (POLES team, JRC Seville, WEO)

(GDP, technological change,...)

Output:

production Q → land use, water use, GHG, environment

consumption Q

trade flows

prices

GLOBIOM-S 1.0

Changes in the deterministic model

- State-dependent primal variables in the model are supply, "final food demand", trade flows (adjusting to realization of a state).
- Realize trade flows etc upon realization of a state (of yield) in the future.

Stochasticity

* Crop yield variability estimated from historical yields (FAO 1961-2006). Means and co-variance matrix \rightarrow yield distributions (100 per crop/region)

Objective function

- State-dependent variables' expected value
- Attitude towards risk: safety-first constraint

Scenarios

➤ Gradually more ambitious Bioenergy Mandate (BM)

➤ Strict Food Security (FS) constraint

Strict versus flexible BM enforcement

Price Volatility

Environmental Implications: Deforestation

Conclusions

- ➤ Inflexible bioenergy mandates
 - Food price volatility
 - Food security under fluctuating yields
 - Deforestation
- > Value added of stochastic model
 - Model runs using flexible mandates principally equivalent to those from a deterministic model using average yields
 - Results are very different from the runs with strict mandates

Work in progress

More sources of uncertainty: climate change, cost of adaptation options, ...

> Physical storage capacity vs. biofuel production

This work is supported by the EU-funded FP7 projects:

- EnerGEO (grant no. 226364)
- ❖ CC-TAME (grant no. 212535)
- PASHMINA (grant no. 244766)

fuss@iiasa.ac.at

Bioenergy Mandates

Source: Russ et al. (2007), JRC Reference Reports, JRC-IPTS, Seville, Spain.

IEW2011 July 7